Биохимия передачи нервного импульса. Основные компоненты и этапы.
Синапс - это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постинаптической мембраны. Мембраны клеток в месте контакта имеют утолщения в виде бляшек - нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию и формируют канал. В результате ионы Са2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са2+ создается работой Са2+-зависимой.
АТФазы - кальциевым насосом. Повышение концентрации Са2+ внутри нервного окончания вызывает слияние 200-300 имеющихся там везикул, заполненных ацетилхолином, с плазматической мембраной. Далее ацетилхолин секретируется в синаптическую щель путем экзоцитоза, и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.
Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц: 2-, 2-бета, 1-гамма и 1-дельта. Плотность расположения белков-рецепторов в постсинаптической мембране очень велика - около 20000 молекул на 1 мкм2. Пространственная структура рецептора строго сооответствует конформации медиатора. При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективость канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Таким образом повышается проницаемость постсинаптической мембраны для натрия и возникает новый импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны выеывает диссоциацию комплекса "ацетилхолин-белок-рецептор" и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы.
Во время гидролиза ацетилхолина образуется промежуточный фермент-субстратный комплекс, в котором ацетилхолин связан с активным центром фермента через серин.
Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды). Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые - в качестве боевых отравляющих веществ (нервно-паралитические яды). Смерть наступает в результате остановки дыхания. Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.
Катехоламины: норадреналин и дофамин. Адренэргические синапсы встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза - тирозингидроксилаза, ингибируемая конечными продуктами.
Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране здесь имеется специальный регуляторный белок - -ахромогранин (Мм = 77 кДа), который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачивается специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включается вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминоксидазой, а также катехоламин-О-метилтрансферазой путем метилирования по оксигруппе. Кокаин тормозит активный транспорт катехоламинов.
Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится). В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).
ГАМК - тормозной медиатор. Повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала.
Глицин - тормозной медиатор, по вызываемым эффектам подобен гамк.
- Экзаменационные вопросы по биохимии для студентов лечебного, педиатрического, медико-профилактического факультетов за 2010-2011 уч. Год
- Электрохимические свойства белков как основа методов их исследования. Электрофорез белков крови.
- Коллоидные свойства белков. Гидратация. Растворимость. Денатурация, роль шаперонов.
- Углевод-белковые комплексы. Строение углеводных компонентов. Гликопротеины и протеогликаны.
- Липид-белковые комплексы. Строение липидных компонентов. Структурные протеолипиды и липопротеины, их функции.
- Ферменты, их химическая природа, структурная организация. Активный центр ферментов, его строение.
- Коферменты и их функции в ферментативных реакциях. Витаминные коферменты. Примеры реакций с участием витаминных коферментов.
- Свойства ферментов. Лабильность конформации, влияние температуры и рН среды. Специфичность действия ферментов, примеры реакций.
- Номенклатура и классификация ферментов. Характеристика класса оксидоредуктаз. Примеры реакций с участием оксидоредуктаз.
- Характеристика класса лиаз, изомераз и лигаз (синтетаз), примеры реакций.
- Характеристика классов ферментов трансфераз и гидролаз. Примеры реакций с участием данных ферментов.
- Современные представления о механизме действия ферментов. Стадии ферментативного катализа, молекулярные эффекты, примеры.
- Ингибирование ферментов. Конкурентное и неконкурентное ингибирование, примеры реакций. Лекарственные вещества как ингибиторы ферментов.
- Обмен веществ и энергии. Этапы обмена веществ. Общий путь катаболизма. Окислительное декарбоксилирование пирувата.
- Цитратный цикл, химизм процесса, его биологическое значение.
- С опряжение реакций цикла трикарбоновых кислот с дыхательной цепью ферментов. Написать эти реакции.
- Реакции прямого и окислительного декарбоксилирования, примеры.
- Современные представления о биологическом окислении. Над-зависимые дегидрогеназы. Строение окисленной и восстановленной форм над.
- Компоненты дыхательной цепи и их характеристика. Фмн и фад-зависимые дегидрогеназы. Строение окисленной и восстановленной форм фмн.
- Цитохромы электронтранспортной цепи. Их функционирование. Образование воды как конечного продукта обмена.
- Пути синтеза атф. Субстратное фосфорилирование (примеры). Молекулярные механизмы окислительного фосфорилирования (теория Митчелла). Разобщение окисления и фосфорилирования.
- Альтернативные пути биологического окисления, оксигеназный путь. Микросомальные монооксигеназы.
- Свободнорадикальное окисление. Токсичность кислорода. Активные формы кислорода. Антиокислительная защита. Роль сро в патологии.
- Потребность человека в белках. Строение незаменимых аминокислот. Биологическая ценность белков. Роль белков в питании.
- Превращение белков в желудке. Роль соляной кислоты в переваривании белков. Показать действие пептидгидролаз. Качественный и количественный анализ желудочного содержимого.
- Переваривание белков в кишечнике. Покажите действие трипсина, карбокси-и аминопептидазы на конкретных примерах.
- Гниение белков и аминокислот в кишечнике. Пути образования продуктов гниения. Примеры.
- Механизм обезвреживания продуктов гниения белков. Роль фафс и удф-гк в этом процессе (конкретные примеры).
- Переаминирование и декарбоксилирование аминокислот. Химизм процессов, характеристика ферментов и коферментов. Образование амидов.
- Дезаминирование аминокислот. Виды дезаминирования. Окислительное дезаминирование. Непрямое дезаминирование аминокислот на примере тирозина.
- Орнитиновый цикл, последовательность реакций, биологическая роль.
- Особенности катаболизма пуриновых нуклеотидов. Их строение и распад. Образование мочевой кислоты. Подагра.
- Генетические дефекты обмена фенилаланина и тирозина.
- Механизмы репликации днк (матричный принцип, полуконсервативный способ). Условия, необходимые для репликации. Основные этапы репликации.
- Биосинтез рнк (транскрипция). Условия и этапы транскрипции. Процессинг рнк. Альтернативный сплайсинг.
- Биосинтез белка. Этапы трансляции и их характеристика. Белковые факторы биосинтеза белка. Энергетическое обеспечение биосинтеза белка.
- Посттрансляционный процессинг. Виды химической модификации, фолдинг и адресование белков. Шапероны, прионы.
- Строение оперона. Регуляция биосинтеза белка у прокариотов. Функционирование лактозного и гистидинового оперонов.
- Особенности и уровни регуляции биосинтеза белка у эукариотов. Амплификация генов, энхансерные и сайленсерные элементы.
- Блокаторы белковых синтезов. Действие антибиотиков и токсинов. Биологическая роль теломер и теломераз.
- Виды молекулярных мутаций и их биологические последствия.
- Биохимический полиморфизм. Генотипическая гетерогенность популяций. Наследственная непереносимость пищевых веществ и лекарств.
- Причины полиморфизма и динамичности протеома при определенной консервативности генома: роль особенностей транскрипции, трансляции, процессинга белка.
- Роль углеводов в питании. Переваривание и всасывание углеводов в органах пищеварительной системы. Написать реакции.
- Катаболизм глюкозы в анаэробных условиях. Химизм процесса, биологическая роль.
- Катаболизм глюкозы в тканях в аэробных условиях. Гексозодифосфатный путь превращения глюкозы и его биологическая роль. Эффект Пастера.
- Г ексозомонофосфатный путь превращения глюкозы в тканях и его биологическая роль. Реакции окислительной стадии.
- Биосинтез и распад гликогена в тканях. Биологическая роль этих процессов. Гликогеновые болезни.
- Пути образования глюкозы в организме. Глюконеогенез. Возможные предшественники, последовательность реакций, биологическая роль.
- Характеристика основных липидов организма человека, их строение, классификация, суточная потребность и биологическая роль.
- 62. Фосфолипиды, их химическое строение и биологическая роль.
- 63. Биологическая роль липидов пищи. Переваривание, всасывание и ресинтез липидов в органах пищеварительной системы.
- 64. Желчные кислоты. Их строение и биологическая роль. Желчнокаменная болезнь.
- 65. Окисление высших жирных кислот в тканях. Особенности окисления высших жирных кислот с нечетным числом углеродных атомов, энергетический эффект.
- 66. Окисление глицерола в тканях. Энергетический эффект этого процесса.
- 67. Биосинтез высших жирных кислот в тканях. Биосинтез липидов в печени и жировой ткани.
- 6 8. Холестерол. Его химическое строение, биосинтез и биологическая роль. Причины
- Витамины, их характеристика, отличительные признаки. Роль витаминов в обмене веществ. Коферментная функция витаминов (примеры).
- С труктура и функции витамина а.
- Витамин д, его строение, метаболизм и участие в обмене веществ. Признаки проявления гиповитаминоза.
- Участие витаминов е и к в метаболических процессах.
- С труктура витамина в1, его участие в метаболических процессах, примеры реакций.
- Витамин в2. Строение, участие в обмене веществ.
- В итамин в6 и pp. Роль в обмене аминокислот, примеры реакций, строение.
- Характеристика витамина с, строение. Участие в обмене веществ, проявление гиповитаминоза. Витамин р.
- Витамин в12 и фолиевая кислота. Их химическая природа, участие в метаболических процессах. Причины гиповитаминозов.
- Витамины – антиоксиданты, их биологическая роль. Витаминоподобные вещества. Антивитамины.
- Биотин, пантотеновая кислота, их роль в обмене веществ.М
- Гормоны передней доли гипофиза, классификация, их химическая природа, участие в регуляции процессов метаболизма. Семейство пептидов проопиомеланокортина.
- Гормоны задней доли гипофиза, место их образования, химическая природа, влияние на функции органов-мишеней.
- Тиреоидные гормоны, место их образования, строение, транспорт и механизм действия на метаболические процессы.
- Тиреокальцитонин, паратиреоидный гормон. Химическая природа, участие в регуляции обмена веществ.
- Инсулин, схема строения, участие в регуляции метаболических процессов. Специфика в действии на рецепторы органов мишеней, инсулиноподобные факторы роста (ифр).
- Глюкагон и соматостатин. Химическая природа. Влияние на обмен веществ.
- У частие адреналина в регуляции обмена веществ. Место выработки. Структура адреналина, механизм его гормонального действия, метаболические эффекты.
- К ортикостероидные гормоны. Структура кортизола, механизм действия. Участие глюкокортикоидов и минералокортикоидов в обмене веществ.
- Гормоны половых желез: эстрадиол и тестостерон, их строение, механизм действия и биологическая роль.
- Простаноиды - регуляторы обмена веществ. Биологические эффекты простаноидов и химическая природа.
- Важнейшие функции печени. Роль печени в обмене веществ.
- Обезвреживающая роль печени. Реакции микросомального окисления и реакции коньюгации токсических веществ в печени. Примеры обезвреживания (фенол, индол).
- Биосинтез и распад гемоглобина в тканях. Механизм образования основных гематогенных пигментов.
- Патология пигментного обмена. Виды желтух.
- Окисление этанола в печени. Первичные эффекты этанола.
- Основы клинической биохимии. Основные виды изменений биохимического состава крови.
- Белки крови, их биологическая роль, функциональная характеристика, лабораторно – диагностическое значение показателей белкового состава крови.
- Химический состав нервной ткани.
- Особенности обмена веществ в нервной ткани (энергетический, углеводный обмен).
- Роль глутамата в обмене веществ в нервной ткани. Написать реакции.
- Биохимия передачи нервного импульса. Основные компоненты и этапы.
- Образование нейромедиаторов – ацетилхолина, адреналина, дофамина, серотонина.
- Особенности химического состава мышечной ткани.
- Особенности энергетического обеспечения мышечного сокращения. Креатин, креатинфосфат и продукт их распада. Биохимические изменения при мышечных дистрофиях и денервации мышц. Креатинурия.
- Роль атф в мышечном сокращении. Пути ресинтеза атф в мышечной ткани. Написать реакции ресинтеза атф в анаэробных условиях. Нарушение метаболизма при ишемической болезни сердца.
- Межклеточный матрикс, его компоненты, функции. Характеристика коллагена, его строение. Полиморфизм коллагеновых белков.
- Этапы синтеза и созревания коллагена. Роль ферментов и витаминов в этом процессе. Катаболизм коллагена.
- Особенности строения и функции эластина. Неколлагеновые структурные белки: фибронектин и ламинин.
- Гликозаминогликаны. Строение, функции.
- Протеогликаны межклеточного матрикса, их состав, функции. Образование надмолекулярных комплексов. Метаболизм протеогликанов.
- Функциональная биохимия почек. Физико-химические свойства мочи. Характеристика химических компонентов мочи по отношению к процессам мочеобразования.
- Молекулярные основы онкогенеза. Онкогены, протоонкогены, гены-супрессоры опухолей (гсо).
- Виды клеточной гибели: апоптоз и некроз. Биологическое значение.
- Этапы апоптоза. Рецепторы, передача сигнала гибели клетки.
- Каспазы: образование и биологическая роль.
- Варианты индукции апоптоза. Роль митохондрий в развитии апоптоза.