9.2.3. Гуморальные факторы
Система комплемента. Система комплемента - это многокомпонентная полиферментная самособирающаяся система сывороточных белков, которые в норме находятся в неактивном состоянии. При появлении во внутренней среде микробных продуктов запускается процесс, который называют активацией комплемента. Активация протекает по типу каскадной реакции, когда каждый предшествующий компонент системы активирует последующий. В процессе самосборки системы образуются активные продукты распада белков, которые выполняют три важнейшие функции: вызывают перфорацию мембран и лизис клеток, обеспечивают опсонизацию микроорганизмов для их дальнейшего фагоцитоза и инициируют развитие сосудистых реакций воспаления.
Комплемент под названием «алексин» был описан в 1899 г. французским микробиологом Ж. Борде, а затем немецким микробиологом П. Эрлихом назван комплементом (complement - дополнение) как фактор, дополнительный к антителам, вызывающим лизис клеток.
|
В систему комплемента входит 9 основных белков (обозначаемых как С1, С2-С9), а также субкомпоненты - продукты расщепления этих белков (Clg, С3в, С3а и т.д.), ингибиторы.
Ключевым событием для системы комплемента является его активация. Она может происходить тремя путями: классическим, лектиновым и альтернативным (рис. 9.3).
Классический путь. При классическом пути активирующим фактором являются комплексы антиген-антитело. При этом Fс-фрагмент и IgG иммунных комплексов активирует Сгсубкомпонент, Сг расщепляется с образованием Cls, гидролизующей С4, который расщепляется на С4а (анафилотоксин) и С4в. С4в активирует С2, который, в свою очередь, активизирует С3- компонент (ключевой компонент системы). С3-компонент расщепляется на анафилотоксин С3а и опсонин С3в. Активация С5- компонента комплемента также сопровождается образованием двух активных фрагментов белков: С5а - анафилотоксина, хемоаттрактанта для нейтрофилов и С5в - активирующего С6-компонент. В итоге образуется комплекс С5, б, 7, 8, 9, который называется мембраноатакующим. Терминальная фаза активации комплемента - это образование трансмембранной поры в клетке, выход ее содержимого наружу. В итоге клетка набухает и лизируется.
Рис. 9.3. Пути активации комплемента: классический (а); альтернативный (б); лектиновый (в); С1-С9 - компоненты комплемента; АГ - антиген; АТ - антитело; ВиД - протеины; Р - пропердин; МСБ - маннозосвязывающий белок
Лектиновый путь. Он во многом аналогичен классическому. Различие заключается лишь в том, что при лектиновом пути один из белков острой фазы - связывающий маннозу лектин взаимодействует с маннозой на поверхности микробных клеток (прообраз комплекса антиген-антитело), и этот комплекс активирует С4 и С2.
Альтернативный путь. Он идет без участия антител и минуя первые 3 компонента С1-С4-С2. Инициируют альтернативный путь компоненты клеточной стенки грамотрицательных бактерий (липополисахариды, пептидогликаны), вирусы, которые связываются последовательно с белками Р (пропердин), В и D. Эти комплексы напрямую конвертируют С3-компонент.
|
Сложная каскадная реакция комплемента протекает только в присутствии ионов Са и Mg.
Биологические эффекты продуктов активации комплемента:
• вне зависимости от пути активация комплемента завершается образованием мембраноатакующего комплекса (С5, б, 7, 8, 9) и лизисом клеток (бактерий, эритроцитов и других клеток);
• образующиеся С3а-, С4а- и С5а-компоненты являются анафилотоксинами, они связываются с рецепторами кровяных и тканевых базофилов, индуцируют их дегрануляцию - выброс гистамина, серотонина и других вазоактивных медиаторов (медиаторов воспалительного ответа). Кроме этого С5а является хемоаттрактантом для фагоцитов, он привлекает эти клетки в очаг воспаления;
• С3в, С4в являются опсонинами, повышают адгезию иммунных комплексов с мембранами макрофагов, нейтрофилов, эритроцитов и тем самым усиливают фагоцитоз.
Растворимые рецепторы для патогенов. Это белки крови, непосредственно связывающиеся с различными консервативными, повторяющимися углеводными или липидными структурами микробной клетки (pattern-структурами). Эти белки обладают опсоническими свойствами, некоторые из них активируют комплемент.
Основную часть растворимых рецепторов составляют белки острой фазы. Концентрация этих белков в крови быстро нарастает в ответ на развитие воспаления при инфекции или повреждении тканей. К белкам острой фазы относятся:
• С-реактивный белок (он составляет основную массу белков острой фазы), получивший название вследствие способности
связываться с фосфорилхолином (С-полисахаридом) пневмококков. Образование комплекса С-реактивный белок- фосфорилхолин способствует фагоцитозу бактерий, поскольку комплекс связывается с Clg и активирует классический путь комплемента. Белок синтезируется в печени, и его концентрация быстро нарастает в ответ на интерлейкин-б;
|
• сывороточный амилоид Р близок по структуре и функции к С-реактивному белку;
• маннозосвязывающий лектин активирует комплемент по лектиновому пути, является одним из представителей сывороточных белков-коллектинов, распознающих углеводные остатки и действующих как опсонины. Синтезируется в печени;
• белки сурфактанта легких также принадлежат к семейству коллектинов. Обладают опсоническим свойством, особенно в отношении одноклеточного гриба Pneumocystis carinii;
• другую группу белков острой фазы составляют белки, связывающие железо, - трансферрин, гаптоглобин, гемопексин. Такие белки препятствуют размножению бактерий, нуждающихся в этом элементе.
Антимикробные пептиды. Одним из таких пептидов является лизоцим. Лизоцим - это фермент муромидаза с молекулярной массой 14 000-1б 000, вызывающий гидролиз муреина (пептидогликана) клеточной стенки бактерий и их лизис. Открыт в 1909 г. П.Л. Лащенковым, выделен в 1922 г. А. Флемингом.
Лизоцим содержится во всех биологических жидкостях: сыворотке крови, слюне, слезе, молоке. Он продуцируется нейтрофилами и макрофагами (содержится в их гранулах). Лизоцим в большей степени действует на грамположительные бактерии, основу клеточной стенки которых составляет пептидогликан. Клеточные стенки грамотрицательных бактерий также могут повреждаться лизоцимом, если на них предварительно подействовал мембраноатакующий комплекс системы комплемента.
Дефензины и кателицидины - пептиды, обладающие антимикробной активностью. Они образуются клетками многих эукариот, содержат 13-18 аминокислотных остатков. На сегодняшний день известно около 500 таких пептидов. У млекопитающих бактерицидные пептиды относятся к семействам дефензинов и кателицидинов. В гранулах человеческих макрофагов, нейтрофилов содержатся α-дефензины. Они синтезируются также эпителиальными клетками кишечника, легких, мочевого пузыря.
|
Семейство интерферонов. Интерферон (ИФН) был открыт в 1957 г. А. Айзексом и Ж. Линдеманом при изучении интерференции вирусов (от лат. inter - между, ferens - несущий). Интерференция - это явление, когда ткани, инфицированные одним вирусом, становятся устойчивыми к заражению другим вирусом. Было установлено, что такая резистентность связана с продукцией зараженными клетками особого белка, который и был назван интерфероном.
В настоящее время интерфероны хорошо изучены. Они представляют собой семейство гликопротеидов с молекулярной массой от 15 000 до 70 000. В зависимости от источника получения эти белки делят на интерфероны I и II типов.
I тип включает ИФН α и β, которые продуцируются инфицированным вирусом клетками: ИФН-α - лейкоцитами, ИФН-β - фибробластами. В последние годы описаны три новых интерферона: ИФН-τ/ε (трофобластный ИФН), ИФН-λ и ИФН-К. В противовирусной защите участвуют ИФН-α и β.
Механизм действия ИФН-α и β не связан с прямым влиянием на вирусы. Он обусловлен активацией в клетке ряда генов, блокирующих репродукцию вируса. Ключевое звено - индукция синтеза протеинкиназы R, которая нарушает трансляцию вирусной мРНК и запускает апоптоз зараженных клеток через Вс1-2 и каспазазависимые реакции. Другой механизм - это активация латентной РНК-эндонуклеазы, которая вызывает деструкцию вирусной нуклеиновой кислоты.
II тип включает интерферон γ. Он продуцируется Т-лимфоцитами и естественными киллерами после антигенной стимуляции.
Интерферон синтезируется клетками постоянно, его концентрация в крови в норме мало меняется. Однако продукция ИФ усиливается при заражении клеток вирусами или действии его индукторов - интерфероногенов (вирусной РНК, ДНК, сложных полимеров).
В настоящее время интерфероны (как лейкоцитарные, так и рекомбинантные) и интерфероногены широко применяются в клинической практике для профилактики и лечения острых вирусных инфекций (грипп), а также с терапевтической целью при хронических вирусных инфекциях (гепатиты В, С, герпес, рассеянный склероз и др.). Поскольку интерфероны обладают не только противовирусной, но и противоопухолевой активностью, они применяются также для лечения онкологических заболеваний.
|