I Химические обозначения
Вхимии для обозначения химических элементов, отображения состава сложных веществ и химических реакций, для показа производимых количественных расчетов выработан свой особый язык.
Элементы принято обозначать химическими символами. Символ состоит из первой буквы или первой и одной из следующих букв латинского названия элемента — первая буква всегда прописная, вторая — строчная. Например, бор (Borum) имеет символ В, барий (Barum) обозначается Ва, железо (Ferrum) — Fe и т. д.
Состав сложных химических веществ отображается химическими формулами. При этом символы элементов пишутся рядом друг с другом. Например, FeS — формула соединения железа с серой; H2SO4 — формула серной кислоты, где цифры показывают необходимые пропорции входящих в состав серной кислоты водорода, серы и кислорода. С помощью химических символов и формул записываются химические уравнения. В каждом уравнении, как в математике, имеются две части, соединенные знаком равен-
254
ства. В левой части записываются формулы веществ, вступающих в реакцию, в правой — формулы веществ, образовавшихся в результате реакции. По химическим формулам и уравнениям производятся различные количественные расчеты.
I Основные законы химии
Химические процессы подчиняются всеобщим законамприроды — закону сохранения массы вещества и закону сохранения энергии, а также ряду специфических для химии законов, которыми управляются все химические реакции.
Закон сохранения массы вещества установили М.В. Ломоносов (1756 г.) и А.Л. Лавуазье (1789 г.) почти независимо друг от друга. Они далеко продвинули развитие химии тем, что при химических реакциях применили физические методы, в частности, взвешивание.
Закон сохранения массы в химических процессах можно сформулировать так: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции. Например, при разложении воды масса воды будет равна сумме массы водорода и массы кислорода. Из закона сохранения вещества вытекает, что вещество нельзя ни создать из ничего, ни уничтожить совсем.
Количественным выражением закона сохранения массы веществ применительно к производственному химическому процессу является материальный баланс, в котором подтверждается, что масса веществ, поступивших на технологическую операцию (приход), равна массе полученных веществ (расход):
где- соответственно массы твердых, жидких и
газоооразныхматериалов, поступивших на обработку (приход материалов);— массы продуктов, получившихся в результате химической переработки (расход материалов).
Закон сохранения массы веществ М.В. Ломоносов связывал с законом сохранения энергии. Он рассматривал эти
255
законы в единстве. Взгляды Ломоносова подтверждены современной наукой.
Закон сохранения энергии действует во всех случаях и повсюду, где одна форма энергии переходит в другую. Например, при переходе энергии пара в турбине в энергию вращательного движения, т. е. механическую энергию, при переходе электрической энергии в электрической лампочке в световую и т. д. Так же как нельзя ни уничтожить, ни создать вещество, нельзя ни создать, ни уничтожить энергию.
Особым видом энергии является химическая энергия, которая освобождается или расходуется при каждой химической реакции. Химическую энергию, как любой вид энергии, можно превратить в механическую (использование взрывчатых веществ), тепловую (сжигание топлива), электрическую (гальванические элементы) и т. п. Измерить химическую энергию непосредственно нельзя. Ее величина определяется, как и величина тепловой энергии, в килоджоулях (в кДж).
Различают химические реакции с выделением тепла и химические реакции с поглощением тепла. Первые называются экзотермическими, вторые — эндотермическими реакциями. Изучением тепловых явлений при химических реакциях занимается термохимия.
Количественным выражением закона сохранения энергии в химическом производстве является тепловой (энергетический) баланс. Применительно к тепловым процессам химической переработки закон сохранения энергии формулируется так: количество тепловой энергии, принесенной в зону взаимодействия веществ, равно количеству энергии, вынесенной веществами из этой зоны. Пример равенства прихода и расхода теплоты можно выразить уравнением:
где Qф — физическая теплота, введенная в процесс с исходными веществами; Qэ — теплота экзотермических реакций; Qв — теплота, введенная в процесс извне; Q'ф — физическая теплота, выведенная из процесса с продуктами реакции; Q'п — потери теплоты в окружающую среду.
К специфическим законам химии относятся такие законы, как закон постоянства состава (Ж. Пруст, 1808 г.), закон
256
постоянных весовых отношений (Дж. Дальтон, 1800 г.), закон простых объемных отношений для газов (Ж.Л. Гей-Люссак, 1808 г.) и в качестве его развития — закон А. Авогад-ро (1811 г.). Данными законами руководствуются ученые-химики и практики для проведения химических расчетов.
I Реакционная способность веществ
Числоизвестных в природе и технике химических процессов очень велико. Одни из них, например, окисление бронзы на воздухе, протекают веками, другие — горение бензина — очень быстро. Разложение же взрывчатых веществ происходит в миллионные доли секунды. При промышленном производстве химических продуктов очень важно знать закономерности протекания реакций во времени, т. е. зависимость их скорости и выхода продукта от температуры, давления, концентрации реагентов и примесей.
Изучением скорости и особенностей протекания химических реакций занимается химическая кинетика. Основополагающим для химической кинетики является представление о том, что исходные вещества, вступающие в химическую реакцию, чрезвычайно редко непосредственно превращаются в ее продукты. В большинстве случаев реакция проходит ряд последовательных и параллельных стадий, на которых образуются и расходуются промежуточные вещества. Число последовательных стадий может быть очень велико — в цепных реакциях их десятки и сотни тысяч. Время жизни промежуточных веществ весьма разнообразно: одни вполне стабильны, другие существуют в равновесном состоянии доли секунды. Изучение скорости протекания химических процессов показало, что химические реакции протекают тем быстрее, чем выше температура, давление и концентрация реагентов.
На скорость некоторых химических реакций можно влиять присутствием небольшого количества определенных веществ, которые сами в реакции участия не принимают. Вещества эти называются катализаторами. Катализаторы бывают положительными, ускоряющими реакцию, и отрицательными — замедляющими ее. Каталитическое ускорение химической реакции называется катализом и
9. За*. 671 257
является приемом современной химической технологии (производство полимерных материалов, синтетического топлива и др.). Считается, что удельный вес каталитических процессов в химической промышленности достигает 80%. Благодаря катализу существенно повысилась эффективность экономики химической промышленности, поскольку ускорение химических реакций заметно влияет на снижение издержек производства.
9. Атомно-молекулярное учение
Ведущей идеей атомно-молекулярного учения, составляющего фундамент современной физики, химии и естествознания, является идея дискретности (прерывности строения) вещества. Вещество не заполняет целиком занимаемое им пространство, оно состоит из отдельных, находящихся на очень малом расстоянии друг от друга частиц, называемых молекулами. Молекула — это наименьшая частица данного вещества, обладающая его химическими свойствами. Свойства молекулы определяются ее составом и химическим строением.
Каждая молекула, в свою очередь, состоит из атомов. Атом — наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ. Химические свойства элемента определяются строением его атомов. Число видов молекул исчисляется количеством возможных соединений атомов (порядка миллиона), число атомов равно числу химических элементов (116, о чем уже было сказано выше).
Атомы разных наименований веществ различаются атомной массой. При обычных условиях атомы отдельно существовать не могут. Ввиду их способности соединяться, одноименные атомы образуют молекулы элементов, а разноименные — молекулы соединений. Атомы элементов не меняются в результате химического процесса. Молекулы при любой химической реакции изменяются.
Атом сложен по своему строению. С открытием радиоактивности в самом конце XIX века представление о неделимости атома изменилось. Было доказано, что атомы
258
веществ имеют сложное строение, и что все химические изменения вызываются преимущественно действием электрических сил. Атомы всех элементов являются системами, образующимися из так называемых элементарных частиц — протонов, электронов, нейтронов. Атомы одного и того же элемента имеют ядро, содержащее одинаковое число протонов. Атомы разных элементов различаются между собой числом протонов и их расположением.
Согласно электронной теории строения вещества, атом любого элемента состоит из электрически положительно заряженного атомного ядра, состоящего из протонов и нейтронов. Вокруг ядра, подобно планетам Солнечной системы, обращаются электроотрицательно заряженные электроны («электронная оболочка»), которые по сравнению с ядром почти не имеют массы. Атом в целом является электрически нейтральным — заряд ядра атома равен заряду электронной оболочки, т. е. число электронов оболочки равно числу протонов ядра атома. Электроны вращаются вокруг ядра атома по определенным энергетически уравновешенным орбитам.
Таким образом, определение атома, приведенное выше, следует уточнить. Согласно современным представлениям, атом — это электронейтральная частица, состоящая из положительно заряженного атомного ядра и отрицательно заряженных электронов.
Молекулы, находясь в непрерывном движении, сталкиваются друг с другом электронными оболочками. Так как электронные оболочки молекул отталкиваются, то они при столкновении отскакивают. Если соударения сильные, то может высвободиться достаточное количество энергии для перегруппировки электронов в столкнувшихся молекулах. При этом происходит формирование нового набора связей между атомов, т. е. образование новых соединений. Так, согласно атомно-молекулярного учения, происходят химические реакции.
Учение о строении атома сыграло колоссальную роль в химии и физике XIX века. На основе атомной модели вскрыты глубинные принципы периодического изменения свойств химических элементов и развита теория Периоди ческой системы Д.И. Менделеева. Решающее значение здесь имело установление закономерностей формирования электронных конфигураций (оболочек) по мере роста заря 259
Периодический закон и Периодическая система элементов Д.И. Менделеева (см. таблицу) позволили химии стать истинной наукой. Химия перестала быть описательной, экспериментальной научной дисциплиной. С открытием периодического закона в ней стало возможным научное предвидение. Периодический закон и Периодическая система ускорили развитие учения о строении атома, что привело к открытию атомной энергии и использованию ее для нужд человечества. Периодический закон сыграл решающую роль в развитии ряда смежных с химией естественных наук.
С учетом данных периодической системы элементов решаются современные задачи химической науки и промышленности. Успешно ведутся работы по получению новых полимерных и полупроводниковых материалов, жаропрочных сплавов, веществ с заданными свойствами. Решаются другие задачи, в том числе и задачи охраны окружающей среды, освоения космоса и т. д.
Применение атомно-молекулярного учения позволяет дать толкование многим положениям, изложенным выше, достигнутым экспериментально. Согласно данной теории, можно констатировать:
а) основой любого вещества являются атомы;
б) элементы — это вещества, состоящие из одинаковых молекул, которые, в свою очередь, состоят из одного или нескольких одинаковых атомов (газообразные элемен ты обычно имеют двухатомные, металлы — одноатом ные молекулы);
в) соединения — это вещества, состоящие из одинаковых молекул, каждая из которых состоит из разных атомов;
г) смеси — это вещества, состоящие из разных молекул;
д) аморфные вещества — это вещества с неупорядочен ным расположением атомов и молекул;
е) кристаллические вещества — вещества с упорядочен ным, периодическим расположением в пространстве атомов в виде кристаллической решетки.
Следует сказать, что большое число веществ, имеющих кристаллическое строение, состоит не из молекул, а из элект-
261
роположительных ионов. Ионы — это электрически заряженные частицы — атомы или атомные группы, потерявшие или присоединившие к себе некоторое количество электронов. Положительно заряженные ионы называются катионами, отрицательно заряженные — анионами. Химические соединения при этом называются ионными соединениями.
Из атомно-молекулярного учения следует, что при каждой химической реакции сначала молекулы реагирующих веществ распадаются на атомы, а затем свободные атомы соединяются в новые молекулы. При этом, подчеркнем еще раз, атомы элементов не меняются, изменяются только молекулы участвующих в реакциях веществ. Химическое соединение элементов объясняется способностью атомов одного элемента соединяться с одним или несколькими атомами другого элемента. Эта способность к соединяемости, как уже говорилось, называется валентностью. Электронная теория строения вещества говорит о том, что соединяться могут только такие элементы, атомы которых имеют незаполненные внешние электронные орбиты (валентные сферы), обладающие определенной валентностью и вследствие чего проявляющие неустойчивость и стремление к упорядочению.
Существует большое разнообразие типов химического взаимодействия веществ. Однако характерным для них является перестройка электронных оболочек связываемых между собой атомов. В результате перестройки происходит обобществление электронов соединяемых элементов, а система в целом приходит в устойчивое положение. Межатомное взаимодействие, сопровождающееся перестройкой валентных электронных оболочек атомов и обобществлением электронов, называют химической (или ковалентной) связью.
Исследование радиоактивности химических элементов привело к открытию изотопов. С современной точки зрения, изотопы — это разновидности атомов одного и того же химического элемента: у них разная атомная масса, но одинаковый заряд ядра. Ядра таких элементов содержат одинаковое число протонов, но разное число нейтронов и занимают одно и то же место в периодической системе элементов. Почти все элементы имеют два или более изотопов. Например, водород — два, кислород — три, железо — четыре и т. д. Только примерно 24 элемента не имеют изо-
262
топов. Изотопы применяют в ядерной технике как конструкционный материал в качестве ядерного горючего в термоядерном синтезе. Радиоактивные изотопы широко используются в качестве источников излучения, в технике меченых атомов и т. д.
10. Химическая технология. Химическая промышленность
Химическая технология — прикладная научная дисциплина о процессах, методах и средствах переработки сырья в конечный химический продукт. Основная задача химической технологии — оптимальное сочетание в единой технологической системе разнообразных химических преобразований с физико-химическими и механическими процессами типа измельчения твердых материалов, фильтрования, воздействия высоких или низких температур, электрических полей и т. п.
Для решения задач химической технологии используют достижения всех разделов химии, физики, биологии, кибернетики, экономики. Химические технологии классифицируются по сырью (технология нефти, пластмасс), по виду товара (технология удобрений, красителей и т. п.), по группам элементов (технология щелочных металлов, технология тяжелых металлов и т. п.), по типам химических процессов (технология хлорирования и др.).
Химическая технология является научной базой химической промышленности. Химическая промышленность в целом — одна из крупнейших отраслей промышленности — сложная производственная система, состоящая из 15 специализированных отраслей. 11 отраслей из 15 организованы в химическую промышленность, 4 — в нефтехимическую.
В химическую промышленность входят:
Горнохимическая промышленность.
Основная химия.
Промышленность химических волокон.
Промышленность синтетических смол и пластиче ских масс.
Промышленность пластмассовых изделий.
263
Лакокрасочная промышленность.
Промышленность химических реактивов и особо чистых веществ.
Промышленность синтетических красителей.
Химико-фотографическая промышленность.
Промышленность бытовой химии.
Другие отрасли (производство химпоглотителей, кремнийорганических соединений и других продуктов).
В нефтехимическую промышленность входят:
Производство синтетического каучука.
Производство продуктов основного органического синтеза.
Сажевая промышленность.
Резино-асбестовая промышленность.
Химическая промышленность характеризуется тесными связями со всеми отраслями народного хозяйства благодаря широкому ассортименту производимой ею продукции. Эта область производства отличается высокой материалоемкостью. Материальные и энергетические затраты в производстве продукции могут составлять от 2/3 до 4/5 себестоимости конечного продукта.
Развитие химической технологии идет по пути комплексного использования сырья и энергии, применения непрерывных и безотходных процессов с учетом экологической безопасности окружающей среды, применения высоких давлений и температур, достижений автоматизации и кибернетизации.
***
Выше были изложены основные представления о химии, ее законах, месте в человеческой цивилизации. В заключение следует еще раз подчеркнуть, что химия — «палка о двух концах». С одной стороны, это благо для человека, без которого немыслимо дальнейшее развитие общества, с другой — бедствие для окружающей среды. Очевидно, что идеал покорения природы, сопутствовавший научно-технической революции в XIX веке, должен быть коренным образом пересмотрен, что предполагает формирование экологического сознания у всех людей, молодого поколения в
264
первую очередь. Молодым предстоит решать трудные задачи ограждения природы от негативного воздействия человека — во избежание глобальной экологической катастрофы.
Вопросы для самоконтроля
Охарактеризуйте место и роль химии в системе «об щество — природа».
Опишите структуру химии как науки и практиче ской деятельности человека.
Изложите основные сведения о веществе и его строе нии.
Назовите химические процессы и изложите основные представления о них.
Опишите основные законы химии и их практическое использование в химической технологии.
Изложите основные представления о реакционной способности веществ.
Опишите значение периодического закона Д.И. Мен делеева.
Изложите основные положения атомно-молекуляр- ного учения.
Изложите ваше понимание проблемы «химия и эко логия».
265
- Концепции современного естествознания
- I введение
- Раздел I научный метод
- 1.2. Эксперимент
- 1.3. Измерение
- 2.1.Абстрагирование и идеализация. Мысленный эксперимент
- 2.2. Формализация. Язык науки
- 2.3. Индукция и дедукция
- 3.2. Аналогия и моделирование
- Раздел II
- 1.1. Натурфилософия и ее место в истории естествознания. Возникновение античной науки.
- 1.2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики
- 3.1.Научные революции в истории естествознания
- 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
- 3.4. Химия в механистическом мире
- 3.5. Естествознание Нового времени и проблема философского метода
- 3.6. Третья научная революция. Диалектизация естествознания
- 3.7. Очищение естествознания
- 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- I Естествознание XX века
- 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
- 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
- 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
- 4.3.2. Физика микромира и мегамира. Атомная физика
- 4.3.3. Достижения в основных направлениях современной химии
- 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
- 4.3.5. Кибернетика и синергетика
- Раздел III
- I Пространство и время
- 1.1.Развитие представлений о пространстве и времени в доньютоновский период
- 1. 2. Пространство и время
- 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
- 2.1.Принцип относительности Галилея
- 2.2. Принцип наименьшего действия
- 2.3. Специальная теория относительности а. Эйнштейна
- 1. Принцип относительности: все законы природы оди наковы во всех инерциальных системах отсчета.
- 2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах от счета и не зависит от движения источников и приемни ков света.
- 2.4. Элементы общей теории относительности
- 3. Закон сохранения энергии в макроскопических процессах
- 3.1. «Живая сила»
- 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
- 3.3. Внутренняя энергия
- 3.4. Взаимопревращения различных видов энергии друг в друга
- 4. Принцип возрастания энтропии
- 4.1. Идеальный цикл Карно
- 4.2. Понятие энтропии
- 4.3. Энтропия и вероятность
- 4.4. Порядок и хаос. Стрела времени
- 4.5. «Демон Максвелла»
- 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
- 4.7. Синергетика. Рождение порядка из хаоса
- I Элементы квантовой физики
- 5.1. Развитие взглядов на природу света. Формула Планка
- 5.2. Энергия, масса и импульс фотона
- 5.3. Гипотеза де Бройля. Волновые свойства вещества
- 5.4. Принцип неопределенности Гейзенберга
- 5.5. Принцип дополнительности Бора
- 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
- 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
- 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
- 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
- I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
- 6.2. Понятие симметрии
- 6.3. Калибровочные симметрии
- 6.4. Взаимодействия. Классификация элементарных частиц
- 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
- 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
- 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
- Раздел IV
- 1. Химия в системе "общество-природа"
- I Химические обозначения
- Раздел V
- I Теории возникновения жизни
- 1.1. Креационизм
- 1.2. Самопроизвольное (спонтанное) зарождение
- 1.3. Теория стационарного состояния
- 1.4. Теория панспермии
- 1.5. Биохимическая эволюция
- 2.1. Теория эволюции Ламарка
- 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
- 2.3. Современное представление об эволюции
- 3.1. Палеонтология
- 3.2. Географическое распространение
- 3.3. Классификация
- 3.4. Селекция растений и животных
- 3.5. Сравнительная анатомия
- 3.6. Адаптивная радиация
- 3.7. Сравнительная эмбриология
- 3.8. Сравнительная биохимия
- 3.9. Эволюция и генетика
- Раздел VI. Человек
- I Происхождение человека и цивилизации
- 1.1.Возникновение человека
- 1.2. Проблема этногенеза
- 1.3. Культурогенез
- 1.4. Появление цивилизации
- I Человек и биосфера
- 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
- 7.2. Космические циклы
- 7.3. Цикличность эволюции. Человек как космическое существо
- I оглавление
- Раздел I. Научный метод 7
- Раздел II. История естествознания 42
- Раздел III. Элементы современной физики 120
- Раздел IV. Основные понятия и представления химии246
- Раздел V.. Возникновение и эволюция жизни 266
- Раздел VI. Человек 307
- 344007, Г. Ростов-на-Дону,
- 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.