Уровень гормона в крови не всегда определяет конечный эффект гормона
Гормоны характеризуются чрезвычайно высокой эффективностью действия, поэтому концентрация их в крови и межклеточной жидкости очень низкая порядка от 10-6до 10-12М. Уровень гормона в крови – интегральный результат двух процессов скорости их синтеза и секреции и скорости распада и удаления из крови. Гормоны могут секретироваться двумя путями:
Регулируемая секреция: клетка хранит гормон в секреторных гранулах и выделяет гормон по мере необходимости. Это - наиболее часто используемый путь и позволяет клеткам выделять большое количество гормона в течение короткого периода времени. (пульсирующий характер секреции)
Конститутивная секреция: клетка не сохраняет гормон, а выделяет его из секреторных везикул по мере его синтеза.
Секреция - наиболее частый объект действия регулирующих систем. Обычным прикладным принципом регуляции секреции гормона является принцип отрицательной обратной связи: сам гормон непосредственно или косвенно тормозит свою дальнейшую секрецию.
например, инсулин секретируется клетками поджелудочной железы в ответ на увеличение уровня глюкозы в крови и его действие направлено на повышение усвоения глюкозы клетками, что приводит к снижению уровня глюкозы крови. Последнее является сигналом для уменьшения секреции инсулина.
Однако в регуляции секреции некоторых гормонов может быть и принцип положительной обратной связи, при котором гормон непосредственно или косвенно вызывает дополнительную секрецию гормона.
например, выброс лютеинизирующего гормона (ЛГ) перед овуляцией - результат положительной обратной связи влияния эстрогенов на переднюю долю гипофиза, ЛГ затем действует на яичники и усиливает секрецию эстрогенов.
Важным в конечном эффекте гормона на клетку при одной и той же его концентрации в крови является скорость доставки через сосудистое русло: усиление кровотока к органу мишени или группе клеток- мишеней приводит к увеличению поставляемого гормона и усилению эффекта и наоборот.
Значительно менее изучены механизмы удаления гормонов из сосудистого русла. Гормоны, подобно всем биомолекулам, имеют характерное для каждого время биологического полураспада, зависящее от многих условий. Прекращение секреции гормона с очень коротким временем полураспада, вызывает быстрое падение концентрации гормона в крови, но если время полураспада гормона - продолжительное, эффективные концентрации сохраняются в течение некоторого времени даже после того, как секреция прекращается. При изложении метаболизма отдельных гормонов будут приведены примеры особенностей обмена отдельных гормонов.
Одним важным следствием того, что уровень гормона регулируется по принципу обратной связи и факта, что гормоны имеют ограниченную продолжительность жизни в сосудистом руле, является то, что секреция большинства гормонов имеет пульсирующий характер. На графике (рис 11.4) приводятся данные о изменениях концентрации лютеинизирующего
Рис.11.4. Изменение уровня ЛГ в крови в течении 8 часового наблюдения.
гормона в крови собаки в течение 8 часов, при исследовании уровня каждые 15 минут:
Пульсирующая природа секреции лютеинизирующего гормона у этого животного очевидна. Эти данные указывают на необходимость осторожной интерпретации результатов исследования в клинической эндокринологии. Подобный пульсирующий характер изменений уровня характерен для многих гормонов. Помимо кратковременных колебаний, указанных здесь существуют долговременные ритмы, что следует учитывать при обследовании и здоровых и больных людей.
Однако уровень гормона в крови еще не определяет конечный эффект гормона. Важное место в механизме действия гормонов отводится и количеству рецепторов в клетке, на которое сами гормоны могут оказывать существенное влияние. Возможны 2 варианта такого влияния
Понижающая регуляция рецепторов
- гормон уменьшает число рецепторов для себя или для другого гормона.
Например, прогестерон уменьшает количество своих рецепторов и рецепторов для эстрогенов в матке
Повышающая регуляция рецепторов
гормон увеличивает число рецепторов для себя или для другого гормона.
например, эстрогены увеличивают количество собственных рецепторов и рецепторов ЛГ в яичнике.
- Глава 11. Гормоны
- Способы взаимодействия сигналов и клеток мишеней многообразны
- В основе взаимодействия сигнала и рецептора лежит слабое взаимодействие
- Механизм передачи сигнала в клетку определяется особенностями свойств рецептора.
- Все рецепторы можно разделить на две группы
- Эндокринная сигнальная система одна из ведущих регулирующих систем в организме.
- Уровень гормона в крови не всегда определяет конечный эффект гормона
- Передача сигнала рецепторами, связанными с g-белками проходит с участием вторичных посредников
- Образование вторичных посредников – дело интегральных белков плазматической мембраны.
- ЦАмф - первый вторичный посредник в истории исследований переноса сигналов
- ЦАмф- аллостерический регулятор протеинкиназы а (пка).
- В каскадном механизме передачи сигнала заложен механизм усиления сигнала
- На каждом этапе каскадного механизма усиления сигнала есть свои выключатели.
- Два вторичных посредника образуются из фосфатидилинозитолов мембран
- Иф3 обеспечивает повышение уровня ионов кальция в цитозоле.
- Обе ветви инозитолфосфолипидного пути действуют совместно
- Разные пути передачи сигнала с участием 7 тмс рецепторов взаимодействуют между собой
- Многие рецепторы сами обладают ферментативной активностью.
- Наиболее широко распространенная группа 1тмс рецепторов в клетках – рецепторные тирозинкиназы (ртк).
- Фосфорилированные тирозиновые остатки связываются со специфическими доменами белков.
- В механизме передачи сигнала с участием 1тмс рецепторов тоже есть система усиления сигнала.
- Рецепторы, взаимодействующие с тирозинкиназами по механизму действия подобны рецепторным тирозинкиназам
- 1Тмс рецепторы могут обладать и серин/треонин протеинкиназной активностью.
- Сигнальные гидрофобные молекулы взаимодействуют с внутриядерными и цитозольными рецепторами
- Гормоны гипоталамуса и гипофиза
- Нейроны гипоталамуса –нейросекреторные клетки
- Гормоны передней доли гипофиза можно разделить на три группы.
- Великаны и карлики- следствие нарушений функций гормона роста
- В механизмах действия гормона роста участвуют посредники
- Конечный эффект гормона роста на метаболизм определяется сочетанием прямого и опосредованного ифр влияния на клетки
- Самые сложные белковые гормоны.
- Гонадотропины- гормоны регулирующие функциональную активность половых желез
- Секреция актг изменяется в течении суток.
- Липотропин - источник эндогенных опиатов
- Гормоны задней доли гипофиза
- Вазопрессин – антидиуретический гормон.
- Основной физиологический эффект окситоцина соответствует названию гормона.
- Несахарное мочеизнурение – форма проявления функциональной недостаточности вазопрессина.
- Гормоны щитовидной железы
- В синтезе гормонов щитовидной железы можно выделить 4 этапа
- Все клетки организма, по-видимому, мишени гормонов щитовидной железы.
- Калоригенное влияние, по-видимому, первично в действии гормонов на организм
- О системных эффектах гормонов можно судить, сопоставляя изменения, наблюдаемые при гипо и гиперфункциях железы
- Развитию гипотиреоза у взрослых может предшествовать увеличение размеров щитовидной железы- зоб
- Гипотиреоз у плода и новорожденного приводит к нарушению роста и развития.
- Увеличение размеров щитовидной железы может быть признаком гиперфункции
- Увеличение размеров щитовидной железы может быть следствием применения антитиреоидных средств.
- Кальцитонин- гормон-полипептид
- Паращитовидные железы – регуляторы обмена кальция и фосфора
- Гормоны поджелудочной железы
- Молекулы инсулина обладают видовой специфичностью
- Синтез инсулина проходит по законам синтеза секретируемых белков
- В регуляции синтеза самого инсулина и в механизме его действия важную роль играют переносчики глюкозы
- Инсулин-«гормон изобилия»
- Эффекты инсулина тканеспецифичны.
- Активирование поступления глюкозы в адипоцит сопровождается ингибированием липолиза
- Инсулиновый рецептор и его субстрат активируют путь передачи сигнала с участием гтф-азы.
- Комплекс нарушений, вызванных недостаточностью функций инсулина называется сахарным диабетом.
- Снижение толерантности к глюкозе при диабете - следствие нарушения использования глюкозы периферическими тканями
- Гипергликемия при диабете – причина «диабета».
- Длительная гипергликемия способствует неферментативному гликозилированию белков
- Избыток глюкозы вне клеток при диабете контрастирует с ее внутриклеточным дефицитом.
- Диабет – болезнь липидного обмена?
- Кетоновые тела –важный источник энергии.
- Кетоновые тела – источник протонов
- Выделяют две формы диабета.
- Высокие дозы инсулина также ведут к коме
- Падение уровня глюкозы компенсируется специальными механизмами.
- Глюкагон образуется а- клетками поджелудочной железы
- Глюкагон действует через 7тмс рецепторы
- Основной регулятор секреции глюкагона - глюкоза
- Молярное отношение инсулин :глюкагон - важный показатель состояния регуляторных систем метаболизма.
- Панкреатический полипептид синтезируется f- клетками поджелудочной железы
- Гормоны надпочечников Гормоны коры надпочечников - производные холестерола.
- Основной исходный субстрат для синтеза гормонов коры надпочечников – холестерол.
- Прегненолон –прямой предшественник всех стероидных гормонов.
- Клетки гломерулярной зоны синтезируют альдостерон потому, что у них есть синтаза альдостерона
- Транскортин- главный транспортный белок стероидных гормонов
- Печень –основной орган катаболизма стероидных гормонов надпочечников
- Секреция актг и кортикостероидов подвержена циркадным ритмам
- Регуляция секреции альдостерона мало зависит от актг
- Ведущий фактор в регуляции секреции альдостерона – ренин –ангиотензиновая система.
- Ангиотензин II– гипертезин
- Глюкокортикоидные гормоны стимулируют образование глюкозы.
- Существует тканевая специфичность в действии глюкокортикостероидов на липидный обмен.
- На обмен белков глюкортикостероидов оказывают двоякий эффект
- Высокие концентрации глюкокортикоидов тормозят иммунологический ответ.
- Высокие концентрации глюкокортикоидов подавляют воспалительную реакцию.
- Глюкокортикоиды оказывают влияние практически на все органы и системы
- Для проявления своей активности альдостерон связывается с внутриклеточным рецептором.
- Недостаточность ферментов, катализирующих синтез кортикостероидов, ведет к гиперплазии надпочечников.
- Синдром Кушинга развивается при избытке глюкокортикоидов.
- Первичная недостаточность надпочечников - аддисонова болезнь.
- Первичный альдостеронизм – болезнь Кона
- Гормоны мозгового слоя надпочечников образуются из тирозина
- Период полураспада катехоламинов составляет 1- 2 минуты.
- Феохромоцитомы – опухоли, ведущие к гипертензии
- Гормоны половых желез
- Клетки Лейдига –основное место синтеза андрогенов
- Белки плазмы обеспечивают транспорт гормонов к органам мишеням
- Тестостерон действует через внутриклеточные рецепторы
- Конечный эффект тестостерона определяется его концентрацией, которая тщательно регулируется.
- Недостаточность мужских половых гормонов может проявляться по разному
- Яичники –источник женских половых гормонов и половых клеток
- Эстрогены образуются их андрогенов
- Основной источник прогестерона – желтое тело
- Количество синтезируемых гормонов зависит от возраста и фазы менструального цикла
- Желтое тело после оплодотворения – железа внутренней секреции
- Плацента секретирует свой гормон роста.
- Фетоплацентарная единица –кооперация в синтезе стероидных гормонов
- Резкое снижение уровня эстрогенов инициирует лактацию после родов
- Гинекомастия – развитие молочных желез у мужчин
- Менопауза – результат снижения активности яичников.
- Эстрогены регулируют синтез белков
- Бесплодие – одна из важных медицинских проблем.
- Гормоны желудочно-кишечного тракта.
- Организация эндокринной системы желудочно-кишечного тракта отличается рядом особенностей
- Секретин - первый гормон в истории эндокринологии
- Инкретины –гормоны стимулирующие секрецию инсулина.
- Вазоактивный интестинальный полипептид член семейства секретина
- Мотилин не входит ни в семейство гастрина ни в семейство секретина
- Механизмы действия многих гормонов жкт еще не известны.