logo
Основные понятия современного естествознания

4. Опишите развитие представлений о свете. Как и кем было показано, что свет есть электромагнитная волна? В чем проявляются волновые свойства света?

Еще древние интересовались природой света и задавались вопросы, почему и как человек видит окружающий его мир. Пифагорейцы считали, что из глаза человека исходят невидимые истечения, которые ощупывают предмет и тем создают зрительное ощущение. Эмпедокл представлял, что такое излучение поступает не только из глаз, но и от светящихся тел. Платон, развивая эти представления, добавил, что «если флюиды подобны друг другу, то они крепко связываются» и создают ощущение увиденного. Демокрит считал, что светящиеся тела выделяют не флюиды, а мельчайшие атомы, которые могут попадать в глаз. Аристотель развивал взгляды атомистов, объясняя происхождение цветов смешиванием разных долей света и тьмы.

Свет обладает волновыми свойствами - дефракцией и интерференцией, которые корпускулярная теория могла объяснить только при огромном числе допущений и предположений. Для понимания явлений более сложных, чем рассматриваемые в геометрической оптике, создана физическая оптика. В ней не только рассматриваются волновые свойства света и его природа, но и устанавливаются границы применимости геометрической оптики как приближения к волновой Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2000. С. 306-309..

В XVII веке возникло две теории света: волновая и корпускулярная. Корпускулярную теорию предложил Ньютон, а волновую - Гюйгенс. Согласно представлениям Гюйгенса свет - волны, распространяющиеся в особой среде - эфире, заполняющем все пространство. Две теории длительное время существовали параллельно. Когда одна из теорий не объясняла какого-то явления, то оно объяснялось другой теорией. Например, прямолинейное распространение света, приводящее к образованию резких теней нельзя было объяснить исходя из волновой теории. Однако в начале XIX века были открыты такие явления как дифракция и интерференция, что дало повод для мыслей, что волновая теория окончательно победила корпускулярную. Во второй половине XIX века Максвелл показал, что свет - частный случай электромагнитных волн. Эти работы послужили фундаментом для электромагнитной теории света. Однако в начале XX века было обнаружено, что при излучении и поглощении свет ведет себя подобно потоку частиц.

Существует несколько способов определения скорости света: астрономический и лабораторные методы.

Впервые скорость света измерил датский ученый Ремер в 1676 г., используя астрономический метод. Он засекал время, которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты. Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного (по астрономическим понятиям) дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Зная расстояние и время запаздывания Ио он вычислил скорость света, которая оказалась огромной, примерно 300 000 км/с.

В конце XIX-начале XX вв. ряд новых опытов заставил вновь вернуться представлению об особых световых частицах - фотонах. Было установлено, что свет имеет двойственную природу, сочетая в себе как волновые свойства, так и свойства, присущие частицам.

В одних явлениях, таких как интереренция, дифракция и поляризация, свет ведет себя, как волна, в других фотоэффект, эффект Комптона) - как поток частиц (фотонов). По современным представлениям свет имеет двойственную корпускулярно-волновую природу (в связи с этим принято говорить о корпускулярно-волновам дуализме): в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц или корпускул (фотонов). Согласно современным представлениям электромагнитная природа света - это лишь одна разновидность проявления света. Другая разновидность характеризуется его квантовой природой.

Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая принципами дополнительности и неопределенности, а также противоречие целого ряда экспериментов применяемым в начале XX в. теориям привели к новому этапу развития физических представлений окружающего мира, ив особенности микромира -- созданию квантовой механики, описывающей свойства микрочастиц с учетом их волновых особенностей. Ее создание и развитие охватывают периоде 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX в. и связано прежде всего с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.

Необходимость вероятностного подхода к описанию микрочастиц -- важная отличительная особенность квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицы в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательной, что не имеет смысла. Карпенков С. Х. Концепции современного естествознания: Учебник для вузов. - М.: Академический проект, 2001. -356с.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882--1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме.

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому -- с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах.