logo
Механизм действия ферментов

3. Механизм действия ферментов

фермент биологический катализ трансаминирование

Раскрытие с помощью рентгеноструктурного анализа пространственного строения ряда ферментов явилось надежной основой для построения рациональных схем механизма их действия.

Установление механизма действия ферментов имеет ключевое значение для раскрытия структурно-функциональных взаимосвязей во множестве биологически активных систем.

Лизоцим обнаружен в различных тканях животных и растений, он находится, в частности, в слезной жидкости и яичном белке. Лизоцим функционирует как антибактериальный агент, катализируя гидролиз клеточных стенок ряда бактерий. Этот полисахарид образован чередующимися остатками N-ацетилмурановой кислоты (NAM), соединенными в-1,4-гликозидной связью (полисахаридные цепи сшиты короткими пептидными фрагментами).

Бактериальный полисахарид является весьма сложным нерастворимым соединением, в связи с чем в качестве субстратов лизоцима часто используют хорошо гидролизуемые олигосахариды, образованные остатками NAG.

Лизоцим белка куриных яиц образован одной полипептидной цепью, содержащей 129 аминокислотных остатков; его молекулярная масса составляет 14 600. Высокая стабильность фермента обеспечивается наличием четырех дисульфидных мостиков.

Информация об активном центре и типе каталитического процесса была получена Д. Филипсом в 1965г. на основе рентгеноструктурных исследований лизоцима и его комплексов с ингибиторами. Молекула лизоцима имеет форму эллипсоида с осями 4,5*3*3 нм; между двумя половинами молекулы находится «щель», в которой происходит связывание олигосахаридов. Стенки щели образованы в основном боковыми цепями неполярных аминокислот, обеспечивающими связывание неполярных молекул субстрата, и включают также боковые цепи полярных аминокислот, которые способны образовывать водородные связи с ациламинными и гидроксильными группами субстрата. Размер щели позволяет разместиться молекуле олигосахарида, содержащей 6 остатков моносахаридов. Методом рентгеноструктурного анализа установить характер связывания субстрата, например гексасахарида NAG6, не удается. В то же время комплексы фермента с ингибитором трисахаридом NAG3 стабильны и хорошо изучены. NAG3 связывается в щели на поверхности фермента, образуя водородные связи и ван-дер-ваальсовы контакты; при этом он заполняет только половину щели, в которой могут связаться еще три моносахаридных остатка. Невосстанавливающий конец (сахар А) оказывается у начала щели, а восстанавливающий конец (сахар С) - в центральной ее части; остатки сахаров А, В и С имеют конформацию кресла. Построение модели фермент-субстратного комплекса было основано на предположении о том, что при связывании субстрата NAG6 реализуются те же взаимодействия, что и при связывании NAG3. На модели фермента внутри щели были размещены три остатка сахара (обозначаемые как остатки D, E и F); каждый последующий сахар присоединялся таким образом, чтобы его конформация была такой же (насколько это возможно), как и у первых трех сахаров. В составе модельного комплекса все остатки сахаров реализуют эффективные нековалентные взаимодействия с боковыми и пептидными группами аминокислотных остатков, образующих щель.

При идентефикации каталитических групп естественно было сосредоточить внимание на тех из них, которые в фермент-субстратном комплексе находятся около расщепляемой гликозидной связи и могут служить донорами или акцепторами протонов. Оказалось, что по одну сторону от расщепляемой связи, на расстоянии ? 0,3 нм (от кислорода гликозидной связи), находится карбоксильная группа Glu-35, а по другую (на таком же расстоянии) карбоксильная группа Asp-52, окружение их сильно различается. Glu-35 окружена гидрофобными остатками; можно предполагать, что в оптимуме рН фермента эта группа находится в неионизированном состоянии. Окружение Asp-52 выражено полярное; ее карбоксильная группа участвует в качестве акцептора водорода в сложной сети водородных связей и функционирует, вероятно, в ионизированном состоянии.

Предложена следующая схема каталитического процесса при гидролизе олигосахарида. Неионизированная карбоксильная группа Glu-35 выступает в качестве донора протона, поставляя его гликозидному атому кислорода между атомом С(1) сахара D и атомом С(4) сахара Е (стадия общего кислотного катализа); это приводит к разрыву гликозидной связи. В результате остаток сахара D переходит в состояние карбкатиона с положительно заряженным атомом углерода С(1) и принимает конформацию полукресла. Отрицательный заряд карбоксилатной группы Asp-52 стабилизирует карбкатион. Остаток NAG2 (сахара E+F) диффундирует из области активного центра. Затем в реакцию вступает молекула воды; ее протон переходит к Glu-35, а ОН- -группа к атому С(1) остатка D (стадия основного катализа). Остаток NAG4 (сахара А+В+С+D) уходит из области активного центра, и фермент возвращается в исходное состояние.

Рибонуклеаза (РНКаза) поджелудочной железы быка гидролизует межнуклеотидные связи в РНК около пиримилиновых звеньев, которые при этом остаются этерифицированы по 3-положению. Фермент наряду с другими нуклеазами широко используется при анализе структуры РНК.

РНКаза образована одной полипептидной цепью, содержащей 124 аминокислотных остатка, а ее молекулярная масса равна 13 680; в молекуле имеется четыре дисульфидные связи. РНКаза является первым ферментом, для которого была установлена первичная структура.

На основании результатов исследования ренатурации рибонуклеазы К. Афинсен впервые четко сформулировал представление о том, что пространственное строение белка определяется его первичной структурой.

В 1958 г. Ф. Ричардс показал, что в определенных условиях субтилизин расщепляет в РНКазе пептидную связь Ala-20 - Ser-21. Образующиеся фрагменты были названии S-пептидом (остатки 1-20) и S-белком (остатки 21-124); за счет нековалентных взаимодействий фрагменты образуют комплекс, названный РНКазой S. Этот комплекс обладает почти полной каталитической активностью нативного фермента; в изолированном виде S-пептид и S-белок неактивны. Далее было установлено, что синтетический пептид, идентичный по последовательности фрагменту S-пептида, содержащий остатки с 1 по 13, восстанавливает активность S-белка, однако более короткий пептид, содержащий остатки с 1 по 11, такой способностью не обладает. Полученные данные позволили сделать заключение о том, что соответствующие остатки His-12 или Met-13 (или оба этих остатка) входят в активный центр фермента.

При исследовании влияния рН на активность РНКазы была выяснена важная роль функциональных групп белка с рК 5,2 и 6,8; это позволяло предполагать участие в каталитическом процессе остатков гистидина.

При карбоксилировании РНКазы иодацетатом при рН 5,5, т.е. в условиях, при которых преимущественно происходит модификация остатков гистидина, наблудалась полная утрата активности; модифицированный фермент содержит 1 моль карбоксиметильных групп на 1 моль белка. В результате образуются две монокарбоксиметиленовые формы фермента. В одной форме карбоксиметилированным является остаток His-12, а в другой - His-119. Преимущественно модифицировался His-119.

Эти данные позволили предположить, что His-12 и His-119 находятся в активном центре и что модификация одного из них препятствует модификации другого.

В результате рентгеноструктурных исследований было выяснено пространственное строение РНКазы S и комплекса РНКазы S с ингибиторами. Молекула имеет форму почки, активный центр локализован в углублении, где находятся остатки His-12, His-119 и Lys-41.

Гидролиз происходит в результате сопряженного действия остатков His-12 и His-119, осуществляющих кислотно-основной катализ. На приведенной схеме указаны стадии каталитического процесса:

1. Субстрат находится в активном центре; His-12, His-119 и Lys-41 расположены около отрицательно заряженного фосфата.

2. В результате действия His-12 как основания, акцептирующего протон от 2-ОН-группы рибозы, и His-119 как кислоты, отдающей протон атому кислорода фосфата, образуется сначала промежуточный комплекс, а затем 2,3-циклический фосфат.

3. На место ушедшего продукта поступает вода, отдающая протон His-119, а ОН- - фосфату, одновременно протон от His-12 переходит к кислородному атому рибозы, образуется второй продукт, а фермент возвращается в исходное состояние.

Химотрипсин секретируется в форме профермента - химотрипсиногена поджелудочной железой позвоночных животных; активация профермента происходит в двенадцатиперстной кишке под действием трипсина. Физиологическая функция химотрипсина - гидролих белков и полипептидов. Химотрипсин атакует преимущественно пептидные связи, образованные карбоксильными остатками тирозина, триптофана, ценилаланина и метионани. Он эффективно гидролизует также сложные эфиры соответствующих аминокислот. Молекулярная масса химотрипсина равна 25 000, молекула содержит 241 аминокислотный остаток. Химотрипсин образован тремя полипептидными цепями, которые связаны дисульфидными мостиками.

Функциональные группы активного центра химотрипсина идентифицированы с помощью необратимых ингибиторов. Остаток Ser-195 был модифицирован диизопропилфторфосфатом и фенилметилсульфофторидом, а остаток His-122 - N-тозил-L-фенилаланин-хлорметилкетоном. Двухстадийность процесса химотрипсинового гидролиза была обнаружена при изучении кинетики гидролиза п-нитрофенилацетата.

Характерной чертой рассматриваемого процесса является образование ковалентного интермедиата - ацилфермента. Ацилируемая каталитическая группа была идентефицирована - остаток Ser-195. Механизм катализа, осуществляемого ферментом, был предложен еще до установления пространственной структуры белка, но позднее был уточнен. В частности, исследования с помощью 18Н2О позволили доказать образование ацилфермента при гидролизе пептидов.

Трехмерная структура с разрешением 0,2 нм была установлена методом рентгеноструктурного анализа Д.Блоу. в 1976г. Молекула имеет форму эллипсоида с осями 5,4*4*4 нм. Результаты кристаллографических исследований подтвердили предположения о том, что остатки Ser-195 и His-57 сближены. Гидроксильная группа Ser-195 находится на расстоянии ?0,3 нм орт атома азота имидазольного кольца His-57. Наиболее интересным оказалось то обстоятельство, что атом азота в положении 1 кольца находится на расстоянии ?0,28 нм от атома кислорода карбоксильной группы боковой цепи Asp-102 и занимает положение, благоприятное для образования водородной связи.

Следует отметить, что химические исследования не могли выявить участия Asp-102 в функционировании активного центра, поскольку этот остаток погружен вглубь молекулы.

В настоящее время считается, что три остатка Asp-102, His-57 и Ser-195 образуют систему переноса заряда, которая играет решающую роль в процессе катализа. Функционирование системы обеспечивает эффективное участие His-57 в катализе в качестве кислотно-основного катализатора и повышает реакционную способность Ser-195 к карбоксильному углероду атакуемой связи.

Ключевым элементом катализа является перенос протона от Ser-195 к His-57. Одновременно происходит атака атомом кислорода серина карбонильного атома углерода субстрата с образованием сначала промежуточного тетраэдрического соединения (1), а затем ацилфермента (2). На следующей стадии происходит деацилирование. Молекула воды поступает в систему переноса заряда, а ион ОН- одновременно атакует карбонильный атом углерода ацильной группы ацилфермента. Как и на стадии ацилирования, образуется промежуточное тетраэдрическое соединение (4). Затем His-57 поставляет протон атому кислорода Ser-195, в результате чего высвобождается ацильный продукт; он диффундирует в раствор, а фермент возвращается в исходное состояние.

Карбоксипептидаза А секретируется в виде профермента поджелудочной железой позвоночных животных. Образование активного фермента происходит в тонком кишечнике при участии химотрипсина. Фермент последовательно отщепляет от пептидной цепи остатки С-концевых аминокислот, т.е. является экзопептидазой.

Карбоксипептидаза А образована одиночной полипептидной цепью, содержащей 307 аминокислотных остатков; молекулярная масса равна 34 470. Аминокислотная последовательность белка была установлена в 1969 г. Р. Бредщоу.

Выяснение механизма действия фермента оказалось возможным только после проведения рентгеноструктурных исследований. Пространственная структура фермента и его комплекса с дипептидом Gly-Tyr (модель субстрата) была установлена У. Липскомбом. Молекула фермента имеет форму эллипсоида с осями 5,0*4,2*3,8 нм; активный центр находится в углублении, переходящем в глубокий неполярный карман. В зоне активного центра локализован ион цинка (его лигандами являются боковые цепи остатков Glu-72, His196, His-69 и молекула воды), а также функциональные группы, участвующие в связывании субстрата и катализе, - остатки Arg-145, Glu-270 и Tyr-248.

При сравнительном анализе структур фермента и его комплекса с Gly-Tyr была получена важная информация о строении фермент-субстратного комплекса. В частности, установлено, что при образовании комплекса гидроксильная группа Tyr-248 перемещается на 1,2 нм по отношению к своему положению в свободном ферменте (т.е. примерно на 1/3 диаметра молекулы).

Согласно схеме каталитического процесса, карбоксилатная группа Glu-270 активирует молекулу воды, находящуюся в сфере реакции, оттягивая от нее протон; образующийся ион ОН- осуществляет нуклеофильную атаку на карбонильный углерод расщепляемой связи. Одновременно гидроксильная группа Tyr-248, находящаяся около атома азота расщепляемой пептидной связи, отдает ему протон. В результате атакуемая пептидная связь расщепляется и образующиеся продукты уходят из зоны активного центра. Приведенная схема иллюстрирует общий основный катализ.

Аспартатаминотрансфераза катализирует обратимую реакцию трансаминирования.

Ферментативная реакция трансаминирования была открыта А.Е. Браунштейном и М.Г. Крицман в 1937г. при изучении ферментного препарата из мышцы голубя. В последующих исследованиях было показано, что реакции трансаминирования широко распространены в живой природе и играют важную роль в сопряжении азотистого и энергетического обмена.

В 1945 г. было установлено, что пиридоксаль-5-фосфат (ПЛФ) является коферментом аминотрансфераз. Молекула ААТ является димером, образованным идентичными субъединицами. В сердечной мышце исследованных позвоночных имеются два изофермента - цитоплазматическая (цААТ0 и митохондриальная (мААТ) аминотрансферазы.

Первичная структура цААТ из сердечной мышцы была установлена в 1972г. Ю.А. Овчинниковым и А.Е. Брайнштейном. Полипептидная цепь белка содержит 412 аминокислотных остатков; молекулярная масса равна 46 000.

Общая теория пиридоксалевого катализа была разработана А.Е. Браунштейном и М.М. Шемякиным в 1952-1953 гг., а несколько позднее - Д.Е. Мецлером и Е.Е. Снеллом. Согласно этой теории, каталитическое действие пиридоксалевых ферментовобусловлено способностью альдегидной группы пиридоксальфосфата образовывать при взаимодействии с аминами, в том числе с аминокислотами, альдимины (шиффовы основания).

В образующейся фосфопиридоксилденаминокислоте имеется система сопряженных двойных связей, по которой происходит смещение электронов от б-углеродного атома облегчает разрыв связей, образованных этим атомом.

Современные представления о механизме ферментативного трансаминирования, разработанные А.Е. Браунштейном и его сотрудниками, являются развитием рассмотренной выше теории. В исходном состоянии альдегидная группа пиридоксальфосфата образует альдиминную связь с е-аминогруппой остатка Lys-258 активного центра (I). При связывании аминокислоты образуется комплекс Михаэлиса (II), а затем альдимин между пиридоксальфосфатом и субстратом (III). В результате последующих превращений через промежуточные стадии (IV) и (V) образуется оксокислота (VI). Этим заканчивается первая полуреакция трансаминирования. Повторение этих же стадий в «обратном направлении» с новой оксикислотой составляет вторую полуреакцию, завершающую каталитический цикл трансаминирования.

Миоглобин и гемоглобин

Эти два белка часто называют дыхательными ферментами. Взаимодействие их с субстратом - кислородом выснено детально, прежде всего на основе рентгеноструктурного анализа высокого разрешения. Трехмерная структура миоглобина была определениа Дж. Кендрью в 1961г., а трехмерная структура гемоглобина - М. Перутцем в 1960 г.

Молекула миоглобина имеет компактную форму - 4,5*3,5*2,5 нм, полипептидная цепь образует 8 спирализованных участков, обозначаемых буквами от А до Н. Она специализированным образом уложена вокруг большого плоского железосодержащего кольца гема. Гем - это комплекс порфирина с двухвалентным железом.

Полярные цепи пропионовой кислоты гема находятся на поверхности молекулы, остальная часть гема погружена в глобулу. Связь гема с белком осуществляется за счет координационной связи между атомом железа и атомом гистидина, локализованного в спирали F; это так называемый проксимальный гистидин. В гемовом кармане в составе спирали Е локализован другой важный остаток гистидина - дистальный гистидин; он находится с противоположной стороны от атома железа на большем расстоянии, чем проксимальный гистидин. Область между железом гена и дистальным гистидином в дизоксимиоглобине свободна, и липофильная молекула О2 может связываться с железом гема, занимая шестое координационное положение. Уникальной особенностью миоглобина, а также гемоглобина, является их способность обратимо связывать О2 без окисления гемового Fe2+ в Fe3+. Это оказывается возможным, поскольку в гидрофобном гемовом карман, из которого вытеснена вода, создается среда с низкой диэлектрической проницаемостью.

При связывании О2 с атомом железа последний перемещается примерно на 0,06 нм и оказывается в плоскости порфиринового кольца, т.е. в энергетически более выгодном положении. Предполагают, что это перемещение обусловлено тем, что ион Fe2+ в дезоксимиоглобине находится в высокоспиновом состоянии и радиус его является слишком большим, чтобы он мог разместиться в плоскости порфиринового кольца гема. При связывании же О2 ион Fe2+ переходит в низкомпиновое состояние и его радиус уменьшается; теперь ион Fe2+ может переместиться в плоскость порфиринового кольца.

Гемоглобин - основной компонент эритроцитов крови, осуществляющий доставку кислорода от легких к тканям, а углекислоты - из тканей в легкие. Гемоглобины разных видов отличаются по форме кристаллов, растворимости, сродству к кислороду. Это обусловлено различиями в аминокислотной последовательности белков; гемовый компонент одинаков у гемоглобинов всех видов позвоночных и некоторых беспозвоночных животных.

Гемоглобин человека представляет собой тетрамер, состоящий из четырех субъединиц, двух б-субъединиц и двух в-субъединиц, содержащих по 141 и 146 аминокислотных остатков соответственно. Между первичными структурами б- и в-субъединиц существует значительная гомология, сходны также и конформация их полипептидных цепей.

Молекула гемоглобинаимеет сферическую форму, диаметр которой равен 5,5 нм. Четыре субъединицы упакованы в форме тетраэдра.

Данные рентгеноструктурного анализа показали, что оксигенирование гемоглобина сопровождается рядом изменений. При низком разрешении установлено, что в этом случае структура становится более компактной (атомы Fe в-цепей сближаются примерно на 0,6-0,7 нм), субъединицы поворачиваются друг относительно друга и оси второго порядка на 10-15о. Результаты исследования при высоком разрешении свидетельствуют о том, что особенно значительные изменения происходят в области бв-контактов.

К настоящему времени на основе рентгеноструктурных исследований и ряда других методических подходов достигнуты значительные успехи в выяснении механизма действия ферментов с заданными свойствами на основе достижений в области генной инженерии. Это открывает широкие возможности для проверки справедливости современных представлений о механизме действия ферментов и создания фундаментальной теории ферментативного катал.