logo
Генетические алгоритмы в задаче оптимизации действительных параметров

1.1 Естественный отбор

Можно сказать, что эволюция - это процесс оптимизации всех живых организмов. Ключевую роль в эволюционной теории играет естественный отбор. Его суть состоит в том, что наиболее приспособленные особи лучше выживают и приносят больше потомства, чем менее приспособленные. Заметим, что сам по себе естественный отбор еще не обеспечивает развития биологического вида. Действительно, если предположить, что все потомки рождаются примерно одинаковыми, то различные поколения будут отличаться только по численности, но не по приспособленности. Поэтому очень важно изучить, каким образом происходит наследование, т. е. как свойства потомка зависят от свойств родителей. Основной закон наследования интуитивно понятен каждому -- он состоит в том, что потомки похожи на родителей. В частности, потомки более приспособленных родителей будут, скорее всего, одними из наиболее приспособленных в своем поколении. Чтобы понять, на чем основана эта похожесть, нам потребуется немного углубиться в строение животной клетки -- в мир генов и хромосом. Почти в каждой клетке любого животного имеется набор хромосом, несущих информацию об этом животном. Основная часть хромосомы -- нить ДНК (молекула дезоксирибонуклеиновой кислоты), которая состоит из четырех видов специальных соединений -- нуклеотидов, идущих в определенной последовательности. Нуклеотиды обозначаются буквами A, T, C и G, и именно порядок их следования кодирует все генетические свойства данного организма. Говоря более точно, ДНК определяет, какие химические реакции будут происходить в данной клетке, как она будет развиваться и какие функции выполнять. Ген -- это отрезок цепи ДНК, отвечающий за определенное свойство особи, например за цвет глаз, тип волос, цвет кожи и т. д. Вся совокупность генетических признаков человека кодируется посредством примерно 60 тыс. генов, суммарная длина которых составляет более 90 млн. нуклеотидов. Различают два вида клеток: половые (такие, как сперматозоид и яйцеклетка) и соматические. В каждой соматической клетке человека содержится 46 хромосом. Эти 46 хромосом -- на самом деле 23 пары, причем в каждой паре одна из хромосом получена от отца, а вторая -- от матери. Парные хромосомы отвечают за одни и те же признаки -- например, отцовская хромосома может содержать ген черного цвета глаз, а парная ей материнская -- ген голубоглазости. Существуют определенные законы, управляющие участием тех или иных генов в развитии особи. В частности, в нашем примере потомок будет черноглазым, так как ген голубых глаз является «слабым» (рецессивным) и подавляется геном любого другого цвета.

В половых клетках хромосом только 23, и они непарные. При оплодотворении происходит слияние мужской и женской половых клеток и образуется клетка зародыша, содержащая как раз 46 хромосом. Какие свойства потомок получит от отца, а какие -- от матери? Это зависит от того, какие именно половые клетки участвовали в оплодотворении. Дело в том, что процесс выработки половых клеток (так называемый мейоз) в организме подвержен случайностям, благодаря которым потомки все же во многом отличаются от своих родителей. При мейозе, в частности, происходит следующее: парные хромосомы соматической клетки сближаются вплотную, затем их нити ДНК разрываются в нескольких случайных местах и хромосомы обмениваются своими частями.

Этот процесс обеспечивает появление новых вариантов хромосом и носит название «кроссинговер». Каждая из вновь появившихся хромосом окажется затем внутри одной из половых клеток, и ее генетическая информация может реализоваться в потомках данной особи. Второй важный фактор, влияющий на наследственность, -- это мутации, которые выражаются в изменении некоторых участков ДНК. Мутации также случайны и могут быть вызваны различными внешними факторами, такими, как радиоактивное облучение. Если мутация произошла в половой клетке, то измененный ген может передаться потомку и проявиться в виде наследственной болезни либо в других новых свойствах потомка. Считается, что именно мутации являются причиной появления новых биологических видов, а кроссинговер определяет уже изменчивость внутри вида (например, генетические различия между людьми).